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Scope and Purpose. Tabu Search (TS) and Simulated Annealing (SA) have demon-
strated to be appropriate metaheuristics for solving NP-hard combinatorial optimization prob-
lems, such as the Vehicle Routing Problem with side-constraints. In order to compare the
performances of both metaheuristics with each other and with a traditional descent implemen-
tation, a comparison of the best solution independent of computing times is fundamentally
wrong because metaheuristics have no unambiguous stopping criteria, as opposed to tradi-
tional descent implementations.

Abstract. Three improvement heuristics for the vehicle routing problem are considered:
a descent heuristic and two metaheuristics Simulated Annealing and Tabu Search. In order
to make an in-depth comparison of the performance of these improvement heuristics, their
behavior is analysed on a heuristic, time-sensitive level as well as on a parametric level. The
design and the results of the experiments are outlined. The external validity of the conclusions
is discussed.




1 Introduction

The Vehicle Routing Problem (VRP) can be defined as the problem of finding a set of routes
for a fleet of vehicles which have to service a number of stops |[N|. The vehicles depart and
arrive at a single depot. The fleet of vehicles is assumed to be homogeneous with capacity
Q. The demand quantity of each stop, ¢;, is deterministic. No single demand exceeds the
vehicle capacity. This corresponds to the description of the standard VRP. However, the
VRP can be extended with various side-constraints, as there are mixed pick-ups (backhaules)
and deliveries (linehaules) and time-windows. Lenstra and Rinnooy Kan (1981) showed that
the VRP with side-constraints is a NP-hard combinatorial problem. Hence, exact algorithms
are only useful for tiny problems. For problems of more realistic size, heuristics are more

appropriate.

An initjal solution to the VRP can be obtained with a wide variety of heuristics. Princi-
pally, three main categories of heuristics can be distinguished: route-construction heuristics,
two-phase heuristics and heuristics based on exact algorithms.

An initial feasible solution to the VRP can be enhanced through the application of an
improvement heuristic. This type of heuristic is aimed at improving a feasible solution by
moving (relocating and/or exchanging) stops within or between routes.

Within routes improvement heuristics are typically used for the Travelling Salesman Prob-
lem (TSP) and are based on the k-opt and Or-opt principles (Croes (1958), Lin (1965), Lin
and Kernighan (1973), Or (1976)).

Between routes improvement methods have been conceived for the VRP. They improve a
feasible solution by moving stops between different routes.

Besides the type of improvement heuristic, a second classification criterion is the search
strategy. The search strategy is a procedure which indicates the order in which new solutions
are searched. Among the VRP improvement heuristics, two groups can be distinguished based
on the search strategy: local and global optimisation methods.

The local optimisation heuristic, the traditional *descent” method, finds a local minimum
only by performing moves of stops which result in the improvement of the objective function
value.

The search strategy of these local optimisation heuristics is blind. This means that the order
by which new solutions are generated is only dependent on the information gathered during
the execution of the heuristic (Osman (1991)).

These heuristics are halted if no further improvement of the objective function value is pos-
sible. As a matter of fact, local optimisation heuristics are trapped in the local optimum in
which they descend.

Global optimisation heuristics, on the contrary, succeed in leaving the local optimum by
temporarily accepting moves which cause a worsening of the objective function value. These
heuristics are often called ”metaheuristics” because the procedure used to generate a new so-
lution out of the current one, is embedded in a heuristic which determines the search strategy.
The search strategy for the global optimisation heuristics is a directed search. This implies
that information of the problem domain and the nature of the objective is used to direct the
search procedure towards promising regions (Osman (1991)).

The main drawback of metaheuristics is that they have no stopping criterion defined. The
longer the computing time, the higher the probability of finding the global minimum.




Simulated Annealing (SA) and Tabu Search (TS) are probably the most popular meta-
heuristics. Other metaheuristics are Genetic Algorithms, Neural Networks, Ant colonies,
Great Deluge, Noise method, ... Most of these metaheuristics are based on principles of
physical or biological processes. For references on metaheuristics the reader is referred to
Osman and Laporte (1996) and to Laporte and Osman (1995), and Gendreau et al. (1998)
for applications on routing problems.

The main contribution of this article is two-fold: a parametric and a heuristic analysis
with three improvement heuristics: a descent, a SA and a TS heuristic. In order to preserve
the comparability of the heuristics, the three heuristics use the same move types. Section 2
gives a detailed description of the move types together with the three heuristics and their
parameters.

All experiments are performed on a test set of fifteen problem instances with vehicle-
related, customer-related and time-related side constraints. This set is presented in section 3.

The parametric analysis is a statistical analysis to investigate the significance of the ef-
fect of each parameter of a heuristic. Therefor the Automatic Interaction Detection (AID)
technique is used. The parametric analysis is reported in section 4.

Section 5 describes the results of the heuristic analysis. This analysis is a dynamic, time-
sensitive analysis where the solution values of the three heuristics are compared at various
points in time.

The rationale behind the research is quite simple and inspired by the practitioner’s interest.
Basically, he is not concerned with heuristics which perform just a few kilometers better on
some classical benchmark problems for two reasons. First, because these problems are not
necessarily comparable to the type of problems he is confronted with. Second, because these
best solutions have been obtained by unique combinations of parameters, obtained after a
whole lot of trials. The practitioner really wants to know why one heuristic performs better
relatively, as compared to other heuristics, and absolutely, as compared to other combinations
of parameters of that heuristic.

2 Description of the heuristics

2.1 Types of move

The three improvement heuristics all use a same type of move. A move can be defined as
the mutation of stops between routes in order to obtain a neighborhood solution out of an

existing solution.
It is assumed that only feasible moves with respect to the side-constraints are performed.

Four types of moves are considered. They are called the String Cross, the String Ex-
change, the String Relocate and the String Mix by convention.

String Cross. The String Cross (SC) is a move in which two strings of stops are exchanged
by crossing two arcs of two different routes. An example of a SC move is given by figure 1.
The concept of this type of move has also been presented by Savelsbergh (1988) and Potvin

et al. (1992).
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Figure 1: Example of a String Cross.

S

Figure 2: Example of a String Exchange.

S

Figure 3: Example of a String Relocation.




String Exchange. The move of type String Exchange (SE) generates a neighborhood so-
lution by exchanging two strings of stops between two routes. Symbolically, this can be
represented by (x1,2), where 1 and z2 are integers representing the length of the strings
to be exchanged in both routes. If K denotes the maximum length of a string of stops, then
1<zl <K and1 < 22 < K must be satisfied. The length of the strings 21 and z2 is not
necessarily equal. Figure 2 contains an example of an SE move.

A similar type of move has been defined by Dror and Levy (1986) and Savelsbergh (1988).
The two most common values for the maximum string length are K =1 and K = 2.

String Relocation. The String Relocation (SR) can be described as the move of a string
of stops from one route to another. Symbolically, this can be represented by (z,0) or (0,z).

The maximum number of stops to be relocated is bounded by a parameter called the maximal

string length K, i.e 1 < 2 < K. This type of move is able to reduce the number of routes.

See figure 3 for an example of a SR.
Dror and Levy (1986) and Savelsbergh (1988) proposed a similar type of move. The values
K =1 and K = 2 are commonly used.

String Mix. The String Mix (SM) is a mixture of the String Exchange and the String Relo-
cate. When implemented, this move type selects the best between the String Exchange and
the String Relocation. The number of routes can be reduced through the moves of the type
String Relocation.

Another variant of a move generation mechanism is the M-interchange mechanism de-
scribed in Osman (1993). This mechanism considers a relocation as a special case of an
exchange.

2.2 Descent heuristic

The descent heuristic (LI) is very popular due to its simplicity and its relatively short com-
puting time. Most published implementations of this heuristic for the VRP are similar. This
implementation is aimed at evaluating the effect of a number of parameters on the final
solution.

Procedure

Step 1: The initial solution is the current solution.

Step 2: Select the first move by selecting the first pair of routes of the current solution,
based on their order number. Select the stops required for the type of move in both
routes based on the route sequence.

Step 3: If the move is unfeasible or does not improve the objective function value, then go
to step 5.

Step 4: If the selection strategy (cfr. infra) is first improvement, then perform the move.
The new solution becomes the current solution. Go to step 2.

If the selection strategy is the best improvement, and the neighborhood solution is
better than all previous solutions, then save the neighborhood solution and go to

step 6.




Step 5: If an entire evaluation cycle has been completed, and the selection strategy is direct
improvement, then the heuristic is stopped.
If an entire evaluation cycle has been completed, and the strategy is the best im-
provement, and the best neighborhood solution has been saved, then this neigh-
borhood solution becomes the current solution. Go to step 2. If no improved
neighborhood solution has been saved during a complete evaluation cycle for the
best improvement strategy, then the heuristic is stopped.

Step 6: Select the next move by selecting the next stops in the route or, if needed, the next
pair of routes to be evaluated. If no move can be selected go to step 5, else go to
step 3.

Parameters

Initial solution (S). This parameter is provided especially for evaluating the effect of the
initial solution on the final solution. The initial solution is generated with an initial heuristic.
Values assigned to this parameter are:

1. A bad initial solution.

2. A good initial solution.

String length (K). This parameter determines the maximum length of a string of stops to be
moved with move types SR, SR or SM.

Values assigned to this parameter are:

1. String length of 1 stop.

2. String length 2 stops.

Selection strategy (P). This parameter guides the choice of the next move to be performed.

Values assigned to this parameter are:

1. First improvement: the first improving move is performed.

2. Best improvement: the best improving move after completion of an evaluation cycle is
performed.

Euvaluation procedure for string length K > 1 (F). The order in which moves of string of two

stops are evaluated. This parameter is irrelevant if the move type is SC.

Values assigned to this parameter are:

1. Evaluation of all possible string lengths between a pair of routes before selecting the next
pair.

2. The string length is increased by one after having completed an evaluation cycle without
improvement.

The initial solution S and the string length K can be considered as problem-specific pa-
rameters. The other three parameters are of a more generic nature.




2.3 Simulated Annealing metaheuristic

The principle of the SA metaheuristic is deduced from the physical annealing process of solids.
Kirckpatrick et al. (1983) and Cerny (1985) proposed the use of SA for combinatorial prob-
lems. Their work is based on the research of Metropolis et al. (1953) in the field of Statistical
Mechanics. For an overview of the research and applications of SA, the reader is referred to
Van Laarhoven and Aarts (1987), Aarts and Korst (1989), Collins et al. (1988) and Eglese
(1990).

As far as our implementation is concerned, the following choices have been made. In order
to determine the value of the initial temperature, we use the approach proposed by Johnson
et al. (1989). The initial temperature Thegin is computed by solving the expression

Pa j— e—AC/Tbegin

d h
and hence _AC

begin = l'ﬂPa (1)

Here AC represents the average deterioration value, which is computed as the cumulated
value of the values of all worsening moves possible from the initial solution, divided by the
number of moves which cause a deterioration of the objective function value. Parameter
P, represents the acceptance fraction, i.e. the ratio of the accepted to the total number of
generated moves.

The cooling function we use for the reduction of the temperature is the simple geometric
function. The temperature at iteration ¢, T}, is obtained from the temperature of the previous
iteration as follows:

T,=R-T, (2)

Here, R represents the cooling rate.

The principle of an epoch is used to determine the thermal equilibrium at each temperature
(see Golden and Skiscim (1986) and Teodorovic and Pavkovic (1992)). Therefore, the value
of the current solution is stored every s moves. If the difference between the value of the last
epoch and all previously saved epochs is less than ¢%, then thermal equilibrium is reached
and the temperature can be decreased according to the cooling function 2. Here, the values
of s and ¢ are both set to 10.

The stopping criterion is satisfied if the percentage of accepted moves is inferior to a critical
acceptance ratio for a predefined number of five consecutive temperature values. However,
each time a new best solution is obtained, the counter is reset to zero. This stopping criterion
has been proposed by Johnson et al. (1989). _

In contradiction to the complete evaluation of moves performed in the implementations
for the LI and TS heuristics proposed, the SA heuristic generates a neighborhood solution
on a stochastic base. This implies that the routes and the stops required to perform a move
are selected at random. In order to narrow the search space, we provide the option of a
range delimiter to prevent the selection of too many bad moves with respect to the objective
function value.

The range delimiter is a travel time restriction between the stops of two different routes
selected at random for the move. This travel time restriction is adapted to the problem
considered. It is computed for each solution with K routes Ry, ..., Rg, first by determining




for each stop ¢ € N \ {0}, belonging to route Ry, the travel time to its nearest neighbor stop

belonging to another route R;.
NN; = in d;;
icRy jel}%l,}cl;él ij (3)
Subsequently, the range delimiter D is set equal to the largest travel time of the set of travel

times previously defined.

D= max NN; (4)
1EN\{0}

This procedure assures the potential participation of each stop to a move.

Other implementations of SA for the VRP are proposed in the literature. Osman (1993)
has proposed a hybrid SA/TS metaheuristic. This hybrid metaheuristic was adapted by
Thangiah et al. (1994) to solve VRPs with time-windows and combined pick-ups and deliv-
eries. In Teodorovic and Pavkovic (1992) SA is used for generating an initial solution as well
as for improving it in the case of the VRP with stochastic demand. Robusté et al. (1990)
and Alfa et al. (1991) integrated SA in an initial heuristic for the VRP.

The SA implementation for the VRP proposed by Van Breedam (1995) and Janssens and
Van Breedam (1995) is for the greater part comparable to the one presented here. The good
solutions obtained by the last authors for some classical benchmark problems confirm the
quality of the SA heuristic proposed here.

Procedure

Step 1: The initial solution is the current solution and is saved.

Step 2: Determine the initial temperature Thegin by means of expression 1, taking account
of the value for the acceptance ratio P,. The current temperature T is set to the
initial temperature Tpegin.

Step 3: Generate a neighborhood solution by randomly selecting a move from the current
solution.

Step 4: Compute § as the difference in objective function value (total travel time) between
the neighborhood solution and the current solution.

If § > 0 and 7 > e~ %/T with r a pseudo-random number in [0,1], then go to step 3.

Step 5: The neighborhood solution becomes the current solution. The neighborhood solu-
tion is saved if it is the best solution so far.

Check for thermal equilibrium, if required. Every 10 moves the value of the current
solution, an epoch, is compared to all previously saved epoch values. If the deviation
is superior to 10%, then no equilibrium is reached and go to step 3.

Step 6: Decrease the current temperature T by means of the cooling function 2. If the
percentage of accepted moves is inferior to the critical acceptance ratio for more
than 5 consecutive temperature reductions without obtaining a new best solution,
then go to step 7 else go to step 3.

Step 7: The solution stored is the final best solution.




Parameters

Initial solution (S). This parameter is provided especially for evaluating the effect of the
initial solution on the final solution. The initial solution is generated with one of the initial
heuristics.

Values assigned to this parameter are:

1. A bad initial solution.

2. A good initial solution.

String Length (K). This parameter determines the maximal length of a string to be moved if
the move type is String Exchange, String Relocation or String Mix.

Values assigned to this parameter are:

1. String length of 1 stop.

2. String length of 2 stops.

Range delimiter (D). The range delimiter is aimed at narrowing the search space for neighbor-
hood solutions and is computed as the largest travel time between two nearest neighbors of
two different routes of the current solution. When implemented, the range delimiter assures
the potential participation of each stop to a move.

Values assigned to this parameter are:

1. No range delimiter.

2. Range delimiter.

Acceptance fraction (A). This is the percentage of accepted moves obtained when performing
a full move cycle on the initial solution. This parameter is used to fix the initial temperature.
Values assigned to this parameter are:

1. 0.30

2. 0.50

Cooling rate (R). This is the fraction by which the temperature is reduced in the geometric
temperature function (2).

Values assigned to this parameter are:

1. 0.70 (fast cooling).

2. 0.90 (slow cooling).

Critical acceptance ratio (L). Critical percentage of accepted moves beneath which the per-
centage of accepted moves has to drop for more than 5 temperature reductions without an
improvement of the best solution, before the SA heuristic is stopped.

Values assigned to this parameter are:

1. 0.01

2. 0.05

The initial solution, the string length and the range delimiter D can be considered as
problem-specific parameters. The other three parameters are of a more generic nature. Their
values are chosen based on extreme but acceptable values published in literature.




2.4 Tabu Search metaheuristic

Tabu Search has been conceived by Glover (1986). Similar ideas were developed by Hansen
(1986) who has proposed a steepest ascent/mildest descent heuristic.

TS is based on the principles of intelligent problem solving. A fundamental element is the
use of a flexible and dynamic memory structure i.e. the tabu list.

The procedure of TS is simple. At each iteration, the best move is selected. If this move
deteriorates the objective function value, it is only performed if the inverse move does not
have the tabu status, i.e. if it is not in the tabu list. If it is in the list, then the next best
move not in the tabu list is selected and performed. This process is repeated until a stopping
criterion is reached. :

A good overview of TS and its applications is provided by Glover (1989), Glover (1990)
and Glover and Laguna (1993).

With respect to the application of TS to the VRP, some publications are to be noticed.
Pureza and Franga (1991), Osman (1991) and Osman (1993) use TS as an improvement
heuristic with a type of move in which a relocation is considered as a special case of an ex-
change. Thangiah et al. (1994) implements a hybrid TS/SA metaheuristic for VRPs with
time-windows using the A-interchange mechanism described in Osman (1991). Taillard (1993)
adds a diversification strategy to his implementation of a TS improvement heuristic for the
VRP. In Semet and Taillard (1993) the use of a TS improvement heuristic is demonstrated
for a practical case.

The implementation of Gendreau et al. (1994) is exceptional in so far that unfeasible solu-
tions with respect to capacity and route-length constraints are temporarily allowed through
the use of penalties. They use a move comparable to the SR type which has been embedded
in a specific insertion heuristic.

Stewart et al. (1992) use a TS strategy for finding an initial solution through a repeated
application of a generalized assignment heuristic.

The TS implementation proposed provides the option to use a static as well as a dynamic

tabu list length. The tabu list contains records of three elements: the list position, the origin
route and the string of stops moved. The list is implemented as a queue. At each iteration,
the last move performed is added to the end of the list. Subsequently, the list is rearranged by
removing the move at position 1 in the list and by pulling all subsequent moves one position
forward in the list.
The main advantage of this type of list is its ease of adaptation to static and dynamic list
lengths. Moreover, all possible lengths for the string of stops to be moved are allowed. Most
existing TS implementations for the VRP (cfr. supra) of which we are aware cannot relocate
or exchange more than one stop between routes. A drawback of this structure occurs when a
move involves the exchange of two strings of stops, as it is the case with the SC and SE move
type. Two separate list positions are required to administrate the move.

The TS implementation comes with a long-term memory to allow diversification. To pre-
vent stops from being too frequently selected for moves, a penalty function value is computed
for each move. This amount is added to the objective function value of the neighborhood
solution that would be obtained if the move was performed. The penalty function value
for a move is determined first by computing the penalty value of each stop involved in the
move. The penalty associated with a stop is computed with the method proposed by Taillard
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(1993). The penalty value for stop 7 is given by W - f;, in which f; stands for the frequency
of occurrence of a stop 7 in a move. A value for parameter W is obtained by selecting a value
at random from the interval

0.1-AT*=/N & ; 0.5- AT*VN - k) (5)

Here, N and k represent the number of stops and the number or routes of the current solu-
tion, respectively. The factor vV - k can be considered as a normalising factor because the
frequency of occurrence of a stop in a move decreases with the size of the problem. The term
A" represents the largest improvement up to iteration ¢.
The use of a penalty function related to a stop is not appropriate for our implementation
because the moves (2,0) or (2,2) would be a priori disfavored with respect to the moves (1,0)
or (1,1). Consequently, we decided to associate a penalty function value with a move rather
than with a stop. The penalty of a move is computed as the average of the penalties of all
stops involved in a move.

The stopping criterion of our implementation is arbitrarily set to 500 iterations. This
number is of secondary importance because the objective function value as a function of the
computing time will be used as a basis for the heuristic analysis.

Procedure

Step 1: The initial solution is the current solution.

Step 2: Perform a complete evaluation cycle of moves of the current solution. Select the
routes according to the route numbers and the stops according to the route sequence.

Step 3: If the best move found gives an improvement of the objective function value, then
go to step 5. :

Step 4: If a long-term memory is used, an additional penalty associated with the move must
be taken into account when selecting the least deteriorating move. If the best move
is in the tabu list then select the move which causes the least deterioration of the
objective function value and which is not in the tabu list.

Step 5: Perform the move. The new solution becomes the current solution. If the new
solution is better than the best solution so far, then save the new solution. Add the
move to the tabu list if there is still some place left. Otherwise, discard the move.

Step 6: Rearrange the tabu list by removing the first move from the list and pushing the
successive moves up forward by one position. Adapt the length of the tabu list, if
required.

Step 7: Go to step 2 if the number of iterations is less than 500.

Step 8: The solution saved is the final best solution.
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Parameters

Initial solution (S). This parameter is provided especially for evaluating the effect of the
initial solution on the final solution. The initial solution is generated with one of the initial
heuristics.

Values assigned to this parameter are:

1. A bad initial solution.

2. A good initial solution.

String Length (K). This parameter determines the maximal length of a string to be moved if
the move type is String Exchange, String Relocation or String Mix.

Values assigned to this parameter are:

1. String length of 1 stop.

2. String length of 2 stops.

Length of tabu list (L). In the case of a static tabu list length, only the lower bound of the
list length interval is considered. For a dynamic list the length of the tabu list is randomly
selected in the interval.

Values assigned to this parameter are:

1. 10-20

2. 20-30

3. 30-40

Iterations for adapting tabu list length (I). This parameter sets the number of iterations after
which the length of the tabu list is changed.

Values assigned to this parameter are:

1. 400 (static tabu list length)

2.5

3. 25

4. 50

Long-term memory (G). This parameter determines whether or not a long term memory is
used.

Values assigned to this parameter are:

1. Implementation without long-term memory.

2. Implementation with long-term memory.

Two parameters, the initial solution S and the string length K are problem-specific pa-
rameters. The other parameters are more generic of nature. As for the SA implementation,
the values chosen for the generic parameters are determined based on publications containing

acceptable values.
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3 Description of the test set of problems

All experiments are performed on a test set containing fifteen test problems. The test set
has not been taken from literature. We are aware that a classical set of benchmark problems
exist, but we intended to investigate systematic behavior of various aspects as there are ge-
ographical variation and vehicle- related, customer-related and time-related constraints. As
the primary aim of this research is the evaluation of the behavior of improvement heuristics,
our intention is by no means creating a new, additional test set of VRP instances but rather
to ascertain ourselves that we analyse what we want to analyse.

In order to cope with systematic geographical variation a basic set of 60 test problems

has been constructed. The set is constructed on the basis of three criteria: the location of
the depot, the grouping of customers and the spreading of customers. Three different depot
locations are considered: central, inside and outside. For the grouping of customers, five pat-
terns are distinguished: singleton, clusters, 50% clusters, cones and 50% cones. Four patterns
are chosen for the spreading of customers: uniform, 50% central, concentric and compressed.
The combination of these patterns gives rise to a basic set of 60 geographic problems.
Three test sets are constructed by adding vehicle-related constraints to the VRPs. The ve-
hicle fleet is homogeneous, i.e. all vehicles have equal capacity, but this capacity is different
in the test sets. Two more test sets are constructed by adding customer-related constraints
to an unconstrained VRP. One set includes the mixed pick-up and delivery service. Half of
the stops require pick-up, the other half are delivery stops. The other set includes heteroge-
neous demand. Instead of using a fixed demand of 10 units per stops, demand varies within
this set between 4 and 16 units per stop. Test sets six and seven are constructed by adding
time-related constraints to an unconstrained VRP. The time constraint has to be interpreted
as a time window, i.e. a limit in time during which the stops can be visited. Both sets are
different in the number of time windows. Set six contains a homogeneous, continuous time
window for all stops, while set seven implements two time windows separated by a closing
time. The time windows are equal for all stops.

The combination of 60 geographic problems with seven types of constraints leads to a set
of 420 problems. For the investigation of the behavior of metaheuristics and the influence of
the local improvement operator a reduced set has been produced. By means of the 'Parti-
tioning around medoids clustering method’ (Kaufman and Rousseeuw (1989)), a successful
clustering of problems of the seven test sets around medoids has been done. A medoid can
be considered as the most representative problem of its cluster. Satisfactory results for the
cluster analysis were obtained by reducing the complete problem set to 15 problems. Each
set is represented by two medoids except the test set with the heterogeneous demand, which
is represented by three medoids.

All VRP problems of the reduced set have an equal number of 100 stops, a single depot
and an unlimited homogeneous fleet of vehicles. Problems 1 to 6 are constrained only by
vehicle capacity. The demand of each stop amounts 10 units. The vehicle capacity equals
100 units for problems 1 and 2, 50 units for problems 3 and 4 and 200 units for problems
5 and 6. Half of the stops of problems 7 and 8 are pick-up points while the other half are
delivery points with a demand of 10 units and a homogeneous vehicle fleet of 100 units. Spe-
cific to problems 9, 10 and 11 is the heterogeneous demand at the stops. The remaining
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four problems, 11 to 15, have time-window constraints. The stops of problems 12 and 13
have one homogeneous time-window associated, while for problems 14 and 15 two separated
time-windows are assigned to each stop. All problem instances are available on the website
http://www.ruca.ua.ac.be/TEW/PHP/alexvb.htm. |

The ’good’ and ’bad’ initial solutions for problems 1 to 7 contain the least possible number
of routes, i.e. the vehicles are filled to full capacity. For these problems, the move types String
Relocation and String Mix cannot be applied and only String Cross and String Exchange can
be used. For the remaining problems, the four move types are applicable.

The reader interested in the performance of the heuristics presented in this research on
some classical benchmark problems, is referred to Van Breedam (1995) and Janssens and Van
Breedam (1995).

4 Parametric analysis

In order to determine the significant effect of the parameters of both metaheuristics, an AID
parametric analysis is performed.

The AID technique is aimed at discovering the structure of the relation between variables.
The dependent variable, the total travel time, is continuous of nature, while the independent
variables, the parameters of the heuristic are nominally scaled.

An AID solution can be represented by a tree structure containing all binary splits. At
each phase, an analysis of variance is performed on each two groups of values of the same
variable. The split with the highest significant F-value among the analyses of variance is
selected. The splitting process is halted if no more binary splits with a significant F-value
can be found.

The interested reader is referred to Morgan and Sonquist (1963) and Sonquist et al. (1971)
for additional information on the AID-technique.

Some remarks have to be made for the parametric analysis of improvement heuristics.
Improvement heuristics require an initial solution to start from. Consequently, the behavior
of improvement heuristics depends at least as much on the structure of the neighborhood of
the current solution than on the specific problem characteristics. The problem characteristics
only have an indirect effect because they affect the neighborhood structure.

The generic parameters of the improvement heuristics also have an influence on the neigh-
borhood structure. Nevertheless, the relation between problem characteristics and the values
of the generic parameters is hard to analyse. Generic parameters affect the choice of moves
required to go from initial to final solution. The sequence of solutions between initial and
final solution is called the trajectory (Pirlot (1992)). The sequential nature of the trajectory
makes it difficult to trace the effect of the generic parameters on the final solution.

4.1 Descent heuristic

If the type of move is SE, SR or SM, 16 solutions are obtained by combining all four parameter
values of the LI heuristic. Only 4 replications are available if the move is of type SC. The
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| Heuristics | Parameters | SC | SE | SR [ SM | Aggregation ||

LI S + [+ [+ [ ++ +
P - - - . -
F . . - o
K + [+ [+

SA S + [+ | + [ ++ +
A | - | - - -
1, - - . - .
R + |+ |+ [+ —+
D + | ¥ [+ [+ —+
K + [+ [+

TS S ++ [+ |+ [ ++ ++
1, - - . - N
i — | - | - T -- -
G FF |+ | +F | ++ ++
K + |+ +

Table 1: Summary of the parametric analysis of the improvement heuristics for the four types of move
and the aggregated solutions. Symbols: ”--": significant effect for a very limited number of problems;
”-": significant effect for a number of problems without common characteristics; ”-+": significant
effect for a number of problems with common characteristics; ”+”: significant effect for most problems
with common characteristics; ”+4-”: consistent significant effect for all problems.

lower number of observations in the case of SC is caused by the fact that parameters K and
F are of no relevance for this type of move. The AID-results for the SC move type are less
reliable due to the insufficient number of replications.

Initial solution (S). The results of the AID-analyses reveal that the good initial solution
gives the best final solutions for almost all problems. For most of these problems, the final
solution obtained with the good initial solution is significantly better than the one obtained
with the bad initial solution.

As far as the move of type SR and SM is concerned, a significantly better final solution
is obtained with a bad initial solution only for problem 14. A possible explanation is that
the minimum of the bad initial solution in which the heuristic descends is accidentally deeper
than that of the good initial solution.

In general, the results indicate a high degree.of dependency of the LI heuristic upon a
good initial solution.

String Length (K). For the type SE, a string of length K=2 gives the best solutions for
all fifteen problems. For ten out of fifteen problems, K=2 is even significantly better. For the
remaining problems 3, 6, 7, 8 and 15 some reasons can be mentioned for the fact that K=2is
better but not significantly better than K'=1. The route sequence imposed by mixed pick-ups
and deliveries (problems 7 and 8) or the time windows (problem 15) can hinder the exchange
of strings containing more than 1 stop. For problems 3 and 6 where only exchanges of equal
string lengths are allowed, exchanges with K=2 are, in essence, equivalent to two exchanges
with K=1.

Concerning the move of type SR, the substitutability of a relocation of K=2 stops with
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two relocations of K=1 stops is the primary reason for the insignificance of the effect of K on
the final solution for all problems.
The results for the move of type SM, are a mixture of those of SE and SR.

Selection strategy (P). The difference between the first and the best improvement hardly

gives significantly different final solutions.

No dominant strategy is observed even if only the value of P in the best solution is considered.
The observations made by Osman (1993) are comparable.

Evaluation procedure for string length K > 1 (F). No significant difference can be observed
between the two procedures for the order of evaluation.

Move type. If the results of the four types of moves are compared, it is observed that for
problems 8 to 15 the solutions of the SM type are always present in the significantly better
move types. Moreover, for seven of these problems the best solution is obtained with the SM
type. The SC and SE are mostly significantly worse for these problems.

For the problems 1 to 7, no significant differences are observed between the solutions of
SC and SE. If only the move type in the best solution is considered, a dominance of the SE
is noticed for five out of seven problems.

The results of the AID analyses for the LI heuristic indicates a clear tendency. The
problem-specific parameters, the initial solution and the string length have an explainable
behavior.

Conversely, the generic parameters have no significant effect on the final solution. No further
conclusions can be drawn for this latter group of parameters.

4.2 Simulated Annealing metaheuristic

The AID-analyses for the SA heuristic are performed on 32 solutions per problem for move
type SC and 64 solutions for move types SE, SR and SM. These solutions were obtained by
combining the six parameters of the SA implementation. The different number of replications
is explained by the fact the string length K is not relevant for move type SC.

Initial solution (S). The quality of the initial solution seems to be somewhat less impor-
tant for the SA heuristic than for the LI heuristic. The effect of the initial solution on the
final solution is for a larger part of the problems significant. However, good initial solutions do
not always produce-the significantly better final solutions. For about a half of the problems,
the significantly better final solutions are obtained with a good initial solution.

This demonstrates the greater independence of the SA heuristic of the quality of the initial
solution. A reason for this phenomenon can be the great variability of the SA heuristic and
its ability to escape from a local minimum fast.

String Length (K). The results for the string length K have to be moderated somewhat in the
case of the SA metaheuristic. Due to the random selection of a move, there is no certainty
on the proportion of moves with K=1 and with K=2. In an extreme case, all accepted moves
could have the same string length.
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The results reveal that for about half of the problems the string length K=2 gives sig-
nificantly better solutions. Although the dominance of K=2 in the best solution is observed
for most problems, any inferences are pure conjecture due to the above-mentioned uncertainty.

Range delimiter (D). A number of tendencies can be deduced from the AID-analyses of
the 15 problems for the travel time restriction as range delimiter. A travel time restric-
tion gives significantly better solutions in the cases where the routes of the initial solution are
well-separated and/or the only side-constraints are capacity constraints. In these cases, the
travel time restriction somewhat prevents the selection of moves which cause a substantial
deterioration of the objective function value. ‘

An implementation without travel time restriction gives significantly better solutions for
problems with a constraining geographic structure, which mostly contains clustered stops.

For most problems with time-windows, no travel time restriction is required to generate
better and often even significantly better solutions. The time-windows play the role of range
delimiter for these problems, because they hinder the selection of moves which considerably
worsen the objective function value.

Acceptance fraction (A). The acceptance fraction has a significant effect on the final solu-
tion for only a very small part of the problems. No dominant value of 4 is observed, even
if only the value of A in the best final solution is considered. The results are approximately
comparable for the four types of move.

These results imply that the differences in the initial temperature caused by the different
acceptance fractions, 0.30 en 0.50, only give significantly different solutions for a very limited
number of problems.

Temperature reduction fraction (R). The significant effect of the cooling rate R occurs only
for a small number of problems. Nevertheless, by considering only the value of R in the best
final solution, a dominance of R=0.90 is clearly observed. This indicates that a slow cooling
mostly yields better solutions.

Our observations confirm the findings of Johnson et al. (1989).

Obviously, the processing time required for a slow cooling (R=0.90) is considerably higher
than that for a fast cooling (R=0.70).

Critical acceptance ratio (L). There is no single problem of the four move types for which
the critical acceptance ratio gives significantly different solutions. Moreover, for a large num-
ber of problems, both values of L give the same best solutions. This means that for these
problems, the percentage of accepted moves during the last five temperature reductions of
the process was already inferior to the lower of both values of L, i.e. 0.01.

As far as the type of move is concerned, it can be observed that the types SR and SM are
significantly better for problems 8 to 15. This can be explained by the ability of both move
types to reduce the number of routes. The advantage of the SM over the SR occurs when
the number of routes is reduced to the minimal number where no further relocations can be
performed. The SM can continue with the exchange of stops in such situations.

For problems 1 to 7, significantly better solutions are obtained with SE for problems 1 to
4 and with SC for problems 5 to 7. The significantly better solutions of the SC for problems
5 to 7 can possibly be related to the long routes of these problems. The exchange of entire
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route segments as is done with the SC can possibly increase the probability of obtaining a
greater improvement in the objective function value.

As a conclusion, we can state that the problem-specific parameter, the initial solution, the
string length and the range delimiter, usually have a significant effect on the final solution.
Moreover, their effects can more or less be related to the problem characteristics.

As far as the generic parameters are concerned, no consistent significant effect is observed.
Only for the parameter representing the cooling rate, it can be observed that a slow cooling
is most often better. No clear dominant values can be observed either for the parameters
representing the acceptance ratio for determining the initial temperature, or for the critical
acceptance ratio.

4.3 Tabu Search metaheuristic

Combining the values of the five parameters of the TS heuristic gives rise to 96 solutions per
problem if the move type is SE, SR or SM. For the move type SC, 48 solutions are available
for the AID-analyses because the parameter string length, K, is not relevant.

Initial solution (S). For almost all problems of the four move types, the good initial solution
gives significantly better final solutions. This high degree of dependency of the TS heuristic
on the good quality of the initial solution can be explained by the traditional path followed by
the objective function of the TS heuristic. First, the objective function value descends as far
as possible. Once it arrived at the point where no further improvements can be performed,
the TS heuristic tends to stagnate and starts to oscillate. Consequently, the quality of the
initial solution is determining for the quality of the final solution, just like for the LI heuristic.

String Length (K). The analyses reveal that a string length of K=2 stops is significantly
better than K=1 stop if a move with K=2 can, in essence, not be substituted by two moves
with K=1. This means that K=2 gives significantly better solutions for the SE, particularly
for problems where exchanges of unequal string lengths are allowed (problems 8 to 15).

For the SR move type, the string length has a significant effect on half of the problems. For
most of these problems K=1 is significantly better. This is explained by the above-mentioned
principle of substitution.

The string length K=2 is significantly better for five out of eight problems in the case of
move type SM.

On average, the processing time for K=2 is twice as much as the one for K=1.

Length of tabu list (L). The effect of parameter L is significant only for a minority of problems.
Even if only the value of L in the best solution is considered, no meaningful deduction can
be made with respect to the length of the tabu list.

Iterations for adapting tabu list length (I). The problems for which the different values of
parameter I give significantly different solutions are not numerous. Even by considering only
the value of Iin the best solution, no inferences can be made. For the move of type SC, a
light preference in favor of the use of a dynamic tabu list is observed.

The limited effect of the tabu list length and its adaptation confirms the findings of Pureza
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and Franga (1991), Semet and Taillard (1993), Osman (1991) and Osman (1993).

Long-term memory (G). For almost all problems, it can be observed that an implementa-
tion with a long-term memory gives significantly worse solutions than the implementation
without it. This can be explained by the fact that the use of a long-term memory hinders the
selection of more favorable stops because they carry a high associated penalty. Consequently,
the least favorable stops are involved in the move, which mostly cause a considerable wors-
ening of the objective function value. This diversification strategy induces a greater variety
in the path of the objective function value.

Gendreau et al. (1994) suggest that bad results obtained with a long-term function can
possibly be caused by the inappropriateness of the constants 0.1 and 0.5 in formula 5.

The computing time for the implementation with a long-term memory is somewhat more
time-consuming than the one without because of the calculation of the penalty function for
every stop involved in a move.

With respect to the type of move, it can be observed that the SM is mostly included in
the significantly best move types for the problems 8 to 15. For the problems 1 to 7, a light
dominance in favor of the SE is observed.

The conclusion for the TS is much like these of the two previous heuristics. The significant
effect of the problem-specific parameters can mostly be related to the problem characteristics.
The most important deduction for this group of parameters is the dependency of the quality
of the final solution upon that of the initial solution.

Only for one generic parameter reliable conclusions can be drawn. The use of the long-
term memory gives significantly worse solutions for the majority of problems.

5 Heuristic analysis

Due to the fact that the stopping criterion of the SA and TS heuristics is not defined as
with the descent heuristic, a simple comparison of only the final solution values of the three
heuristics would not be appropriate.

Besides, the computing time of both heuristics highly depends on the value assigned to
the parameters. Nevertheless, it remains difficult to estimate the processing time of the SA
and TS heuristics. Moreover, the probability of finding a better final solution increases with
the run time. A simple comparison of the final solution of the three improvement heuristics
without taking into account the run time is not appropriate.

An alternative for comparing the improvement heuristics dynamically is required. The
specific feature of the dynamic analysis is that not only the final solutions of the three improve-
ment heuristics are compared, but also their intermediary solutions at various time points.
Three time points are considered, corresponding to the time at which the best final solution
of each individual heuristic is obtained.

The dynamic heuristic analysis is performed with the LI, SA and TS improvement heuristic
for each of the four types of move and for each problem separately.

A statistical analysis of the different solutions is not meaningful, because it is not clear at
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Figure 4: Example of the path of the objective function value for the LI, TS and SA heuristics. The
dashed vertical lines represent the minima attained by one of the heuristics.

which time point to perform the analysis without (dis)favoring one of the three heuristics.

An important analysis tool for the dynamic heuristic analysis is the graphical representa-
tion of the path of the objective function value of each heuristic versus computing time. An
example is given in figure 4.

The path of the objective function of the LI heuristic is represented by a straight line
connecting the initial with the final solution value.

With respect to the SA, the objective function value of the best solution and its run
time are registered at each temperature reduction. Consequently, the SA is represented by a
monotonic descending curve. The recording of the best solution found during a temperature
reduction instead of the current solution at the time of the temperature reduction can be
justified as follows. If the current solution at the time of the temperature reduction were
saved, it would not possible to know the best solution if it was reached before the moment
of the temperature reduction. The drawback of this approach is that deteriorations of the
objective function value are not registered. The only alternative to this approach would
have been to record every move performed. However, this would make the graph less clear.
Moreover, we are primarily interested in the improvement instead of the worsening of the
objective function value of the SA heuristic. _

The objective function value of the TS heuristic is recorded at each iteration. In the
graph, the path of the objective function value can be identified by its oscillating nature.

The three dashed vertical lines represent the three time points corresponding to the min-
ima obtained by the individual heuristics.

Tables 2 to 5 illustrate the dynamic comparison of the objective function values of the LI,
SA and TS heuristics with each move type at the three time points corresponding with the
minimum of each heuristic. The symbol "*’ indicates which heuristic attains its minimal value
after the given run time. The best solution of the three heuristics at each time point is printed
in bold face. The column at the right of each cell contains the relative difference with respect
to the best solution at that time point. The same computer has been used for all experiments.

The main findings of this analysis can be summarized as follows.
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| Problem | Initial | Minimum 1 [ Minimum 2 | Minimum 3 I
1 Time 5 240 1006
LI 1245 1233(*) 1233 0.02 1233 0.03
TS | 1245 | 1245 0.01 | 1213 1192(%)
SA 1245 1245 0.01 1213(*) 1213 0.02
2 Time 30 142 384
LI 1703 1610(*) 1610 0.01 1610 0.01
TS | 1703 | 1637 0.02 | 1580(*) 1580
SA 2352 2220 0.25 1882 0.20 | 1613(*) 0.01
3 Time 2 113 480
LI | 1781 | 1774(*) 1774 0.01 | 1774 0.01
TS | 1781 | 1781 0.01 | 1768 1763(*)
SA 1781 1781 0.01 | 1770(*) 0.01 | 1770 0.01
4 Time 7 17 35
LI 1671 1590(*) 1590 0.01 1590 0.01
TS | 1671 | 1602 0.01 | 1577(%) 1577
SA 3094 3094 0.98 | 2365 0.50 1639(*) 0.04
5 Time 59 846 1413
LI 1072 1019(*) 1019 0.03 1019 0.05
TS 1072 1022 0.01 988(*) 988 0.01
SA 1266 1266 0.24 | 1192 0.21 | 975(*)
6 Time 83 3076 4286
LI 1105 1051(*) 1051 0.04 | 1051 0.07
TS | 1105 | 1083 0.03 | 1015(%) 1015 0.04
SA | 1105 | 1105 0.05 | 1023 0.01 | 979(%)
7 Time 67 502 2766
LI 1097 1070(*) 1070 0.03 | 1070 0.04
TS 1097 1097 0.03 1040 1032(*)
SA 1332 1332 0.24 1053(*) 0.01 1053 0.02
8 Time 50 390 2184
LI 1251 1198(*) 1198 0.03 | 1198 0.04
TS 1251 1247 0.04 1154(*) 1154
SA 1251 1251 0.04 | 1251 0.01 1106(*) 0.02
9 Time 5 219 303
LI 2089 2009(*) 2009 0.11 | 2009 0.11
TS 2089 2089 0.04 | 1940 0.07 | 1841(*) 0.01
SA | 2089 | 2089 0.04 | 1818(%) 1818
10 Time 7 223 340
LI 1202 1141(*) 1141 0.03 | 1141 0.04
TS 1202 1182 0.04 | 1106 0.01 1097(*)
SA | 1588 | 1588 0.39 | 1102(%) 1102 0.01
11 Time 37 148 680
LI 1386 1303(*) 1303 0.07 | 1303 0.07
TS 1386 1313 0.01 | 1298 0.07 | 1261(*) 0.04
SA 1386 1386 0.06 1215(*) 1215
12 Time 42 151 157
LI 2212 1830(*) 1830 0.04 | 1830 0.04
TS | 2212 | 1876 0.03 | 1754(%) 1754
SA 2212 1904 0.04 | 1789 0.02 | 1784(*) 0.02
13 Time 6 64 395
LI 1235 1127(*) 1127 0.06 | 1127 0.06
TS 1235 1198 0.03 | 1102 0.04 | 1064(*) 0.01
SA | 1235 | 1188 0.05 | 1062(*) 1062
14 Time 11 83 380
LI 3011 2857(%) 2857 0.07 | 2857 0.08
TS 3692 3692 0.30 | 2915 0.09 2640(*)
SA 3692 3692 0.30 | 2663(*) 2663 0.01
15 Time 35 108 226
LI | 1398 | 1236(%) 1236 0.06 | 1236 0.06
TS 1398 1270 0.03 | 1179 0.01 | 1169(*) 0.01
SA 1398 1331 0.07 | 1165(*) 1165

Table 2: Heuristic analysis of LI, TS and SA with move type SC.
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| Problem | Initial | Minimum 1 | Minimum 2 | Minimum 3 1l
1 Time 56 , 306 4120
LI 1245 1158(*) 1158 0.01 1158 0.01
TS 1245 1199 0.03 1155 0.01 1143(%)
SA 1245 1245 0.07 1144(*) 1144 0.01
2 Time 68 421 3503
LI 1703 1609(*) 1609 0.01 1609 0.01
TS 2352 2193 0.36 1903 0.20 1591(*) 0.01
SA 1703 1703 0.06 | 1585(*) 1585
3 Time 138 177 638
LI 2726 1756 0.01 | 1756(*) 0.01 | 1756 0.01
TS 1781 1762 0.01 1762 0.01 1751(*)
SA 1781 1752(*) 1752 1752 0.01
4 Time 169 193 265
LI 3049 1487 0.01 1487(*) 0.01 1487 0.01
TS 1671 1495 0.01 1495 0.01 1476(*) 0.01
SA | 1671 | 1486(*) 1486 1486
5 Time 249 4417 5346
LI 1072 1030(*) 1030 0.03 1030 0.03
TS 1072 1037 0.01 998(*) 998
SA 1072 1072 0.04 1072 0.07 | 1014(*) 0.02
6 Time 172 2501 4595
LI 1105 1037(*) 1037 0.05 1037 0.05
TS 1105 1067 0.03 984(*) 984
SA 1105 1105 0.06 | 1105 0.11 | 1037(*) 0.05
7 Time 69 888 1164
LI 1097 1096(*) 1096 0.04 | 1096 0.06
TS 1097 1097 0.01 1067 0.01 1038(*)
SA 1097 1097 0.01 1055(*) 1055 0.02
8 Time 680 2081 2667
LI 1251 1200(*) 1200 0.05 1200 0.08
TS 1251 1209 0.01 1157 0.02 | 1114(*)
SA 1251 1251 0.04 1137(*) 1137 0.02
9 Time 72 207 387
LI 2089 1852(*) 1852 0.03 | 1852 0.03
TS 2543 1907 0.03 1800(*) 1800 0.01
SA 2089 2544 0.37 | 2207 0.11 | 1799(*)
10 Time 33 323 2229
LI 1202 1098(*) 1098 0.01 | 1098 0.04
TS | 1202 | 1141 0.04 | 1114 0.02 | 1052(%)
SA 1588 1564 0.42 | 1094(*) 1094 0.04
11 Time 131 359 372
LI | 1386 | 1250(*) 1250 0.03 | 1250 0.06
TS | 1386 | 1269 0.01 | 1238 0.02 | 1174(%)
SA 1948 1948 0.56 | 1217(*) 1217 0.04
12 Time 105 259 5021
LI 2212 1955(*) 0.04 | 1955 0.05 | 1955 0.05
TS 2212 2035 0.06 | 1988 0.06 | 1877(*) 0.01
SA | 2212 | 1926 1866(*) 1866
13 Time 48 215 2765
LI 1235 1108(*) 1108 0.05 | 1108 0.09
TS 1235 1168 0.05 | 1116 0.07 | 1019(*)
SA 1235 1149 0.04 | 1046(*) 1046 0.03
14 Time 36 280 3022
LI 3011 2868(*) 0.03 | 2868 0.12 | 2868 0.17
TS | 3011 | 2890 0.04 | 2769 0.08 | 2443(%)
SA 3011 2781 2558(*) 2558 0.04
15 Time . 116 2078 1843
LI 1398 1219(*) 0.05 1219 0.07 | 1219 0.07
TS 1398 1259 0.08 | 1215 0.07 | 1149(*) 0.01
SA 1398 1161 1135(*) 1135

Table 3: Heuristic analysis of LI, TS and SA with move type SE.
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{[ Problem [ Initial | Minimum 1 | Minimum 2 | Minimum 3 i
8 Time 99 823 2279
LI 1251 1128(*) 1128 0.06 | 1128 0.06
TS 1251 1132 0.01 1067(*) 1067
SA 1251 1251 0.11 | 1251 0.17 | 1098(*) 0.03
9 Time 9 10 142
LI 2089 1969(*) 1969 1969 0.07
TS 2089 2017 0.02 2017(*) 0.02 | 2017 0.10
SA 2089 2089 0.06 | 2089 0.06 | 1833(*)
10 Time 50 261 268
LI 1202 1108(*) 1108 0.01 | 1108 0.03
TS 1202 1120 0.02 | 1097 1075(*)
SA 1202 1202 0.08 1108(*) 0.01 | 1108 0.03
11 Time 67 167 372
LI 1386 1252(*) 1252 0.03 | 1252 0.03
TS 1386 1267 0.01 | 1263 0.04 1247(*) 0.02
SA 1386 1343 0.07 1220(*) 1220
12 Time 47 234 381
LI 2212 1844(*) 1844 0.14 | 1844 0.14
TS 2212 1968 0.07 | 1699 0.05 1678(*) 0.04
SA 2212 2078 0.013 | 1616(*) 1616
13 Time 23 141 349
LI 1235 1134(*) 0.00 | 1134 0.15 | 1134 0.15
TS 1235 1156 0.02 | 1045 0.06 990(*) 0.01
SA | 1235 | 1133 983(*%) 983
14 Time 244 804 1312
LI 3692 2681(*) 0.11 | 2681 0.14 | 2681 0.14
TS 3011 2691 0.12 | 2437 0.04 | 2345(%)
SA | 3692 | 2382 2350(*%) 2350 0.01
15 Time 49 131 712
LI 1398 1248(*) 1248 0.11 | 1248 0.13
TS | 1398 | 1271 0.02 | 1170 0.04 | 1106(*)
SA 2162 1301 0.03 1120(*) 1120 0.01

Table 4: Heuristic analysis of LI, TS and SA with move type SR.
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| Problem | Initial | Minimum 1 | Minimum 2 | Minimum 3 I
8 Time 150 735 2624
LI 1251 1125(*) 1125 0.05 1125 0.05
TS 1251 1137 0.01 | 1069(*) 1069 0.01
SA | 1251 | 1251 0.11 | 1251 0.17 | 1068(%)
9 Time 25 119 1181
LI 2089 1876(*) 1876 0.03 | 1876 0.05
TS 2089 1966 0.05 | 1856 0.02 1790(*)
SA 2089 2086 0.11 1818(*) 1818 0.01
10 Time 85 364 669
LI 1202 1064(*) 1064 0.02 | 1064 0.02
TS | 1202 | 1106 0.04 | 1049 1045(*)
SA 1588 1588 0.49 1063(*) 0.02 | 1063 0.02
11 Time 119 349 2261
LI 1386 1205(*) 1205 0.01 | 1205 0.04
TS 1386 1261 0.05 | 1225 0.02 | 1160(*)
SA | 1386 | 1386 0.15 | 1187(%) 1187 0.02
12 Time 251 350 2654
LI 2212 1770(*) 0.04 | 1770 0.04 | 1770 0.04
TS 2212 1809 0.06 | 1770 0.04 1713(*) 0.01
SA | 2212 | 1700 1696(%) 1696
13 Time 82 165 349
LI 1235 1058(*) 0.01 | 1058 0.06 | 1058 0.07
TS 1235 1088 0.04 | 1050 0.06 989(*)
SA | 1235 | 1044 998(*) 998 0.01
14 Time 171 183 1915
LI 3692 2645 0.09 | 2645(*) 0.09 | 2645 0.13
TS 3011 2784 0.14 | 2725 0.12 | 2337(*)
SA 3011 2435(*) 2435 2435 0.04
15 Time 119 131 1903
LI 1398 1182 0.06 | 1182(*) 0.06 | 1182 0.09
TS 1398 1242 0.11 | 1202 0.08 1083(*)
SA | 1398 | 1118(%) 1118 1118 0.03

Table 5: Heuristic analysis of LI, TS and SA with move type SM.
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The final solution of the LI heuristic is usually the first minimum encountered. This LI
solution is mostly better than the intermediary SA and TS solution at that time point. Only
for some problems with time-windows, the solution of the SA is already better at the first
minimum. '

For the time points corresponding to minima 2 and 3 the best solutions are obtained with
the TS and SA heuristics. The results of the analysis do not show a preference of one over
the other.

The SA heuristic tends to produce a final solution in less run time than the TS heuristic.
The specific path of the objective function value of the TS value indicates that the heuristic
can be speeded up by stopping after a fixed number of iterations without improvement and
by using a range delimiter for restricting the number of moves to be evaluated at each itera-
tion. Moreover, the difference of the final solutions between the SA and TS rarely exceeds 4%.

A final remark is the comparison of the final results of the initial with those of the improve-
ment heuristics for the fifteen problems of the reduced test set. A remarkable observation is
that the best final solution obtained with one of the three improvement heuristics is better
than the best solution obtained with one of the initial heuristics only for eight out of the
fifteen problems. This indicates that the quality of the initial heuristics remains very im-
portant. Moreover, the initial heuristic generates an initial solution in a very short time as
opposed to that of the improvement heuristic. In addition, the TS and LI heuristics are highly
dependent on the quality of an initial solution. All these arguments allow us to conclude that
it is worth spending much effort on conceiving a good initial heuristic, while subsequently
this good initial solution can further be improved by an improvement heuristic if sufficient
run time and computer resources are affordable.

6 Conclusions

The comparison of descent heuristics and metaheuristics for the vehicle routing problem re-
vealed some valuable results. The comparison has been conducted at a parametric as well as
on a heuristic level on a test set of fifteen problem instances.

The parametric analysis resulted in a classification of the parameters into two main groups:
the problem-specific and the generic parameters. The significant effect and the significantly
better values of the problem-specific parameters could more or less be related to the problem
characteristics. Therefore, the transferability of the findings for these parameters to other
problems with comparable characteristics cannot be excluded.

For a large number of problems, most of the generic parameters have no significant effect
on the final objective function value. The portability of these findings to other problems is
speculative, due to the fact that the values for the generic parameters can hardly be related
to the problem characteristics.

Useful recommendations resulting from the analysis of the generic parameters are the slow
cooling in the case of SA and the bad solutions obtained with the long-term memory in the
case of the TS heuristic.

The heuristic analysis of the improvement heuristics is a dynamic analysis. The main
conclusion of the dynamic analysis is that the available run time determines the choice of the
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best improvement heuristic.
The heuristic analysis did not permit to indicate the better among both metaheuristics, SA

or TS. The difference between their final solution never exceeded 4%. The concept of the
dynamic analysis proposed is transferable to other problems. The results obtained are only
transferable to problems with almost identical characteristics.

The dynamic heuristic analysis can be a useful tool for improving the implementation of
the heuristics by analysing the path of the objective function value produced by the heuristics.
This has has been illustrated by the recommendations we proposed for speeding up the TS
heuristic. Moreover, the opportunities for building hybrid metaheuristics, combining the best
features of both metaheuristics can be evaluated. The TS provides the certainty of finding at
least a local minimum, while the SA permits a fast shift of the search process towards other
minima.
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