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Abstract

The success of computerized vehicle routing systems depends, for the ma-
jor part, on the variety and the complexity of the real-world side-constraints
that can be handled. This paper gives an overview of some side-constraints
important to practitioners and presents some ways to consider these side-
constraints in solution methods for complex vehicle routing problems.
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1 Introduction

The Vehicle Routing Problem (VRP) can be defined as the problem of finding a set
of routes for a fleet of vehicles which have to service a number of stops. Vehicles
depart from and arrive at a depot. In the standard VRP all vehicles are assumed
to be homogeneous with respect to their capacity, whereby the demand quantity
of each stop is deterministic and no single demand exceeds the vehicle capacity.
However, the VRP can be extended with various side-constraints, such as mixed
pick-ups (backhauls) and deliveries (linehauls), hard and soft time-windows, route
duration constraints etc.

The complexity of the side-constraints dealt with in the literature to a large
extent determines the applicability of academically developed methods and con-
cepts to real-world vehicle routing and scheduling problems.

The aim of this article is to give an overview of some types of side-constraints
important to industry. The nature of each type is described along with some ways
to implement it in solution methods. Moreover, some relevant references to lite-
rature are provided.

The first section of this paper contains some general guidelines on how to solve
the VRP. In following sections the standard VRP is extended with three major
categories of side-constraints: customer-related, vehicle-related and depot-related
side-constraints.

2 The Vehicle Routing Problem

The VRP was first formulated by Dantzig and Ramser (1959). Lenstra and Rin-
nooy Kan (1981) showed that the VRP with or without side-constraints is an
NP-hard combinatorial problem. Hence, exact algorithms are only useful for tiny
problems. For real life problems, heuristics are much more appropriate (from a
commercial point of view). Heuristics generate suboptimal but good solutions in a
computing time which is proportional to a low-order power of the number of stops.

Basically, two types of heuristics can be distinguished: initial and improvement
heuristics. Initial heuristics generate a feasible solution to the VRP, given the data
on customers, depot, vehicles and side-constraints.

An initial solution to the VRP can be obtained with a wide variety of heu-
ristics. Principally, three main groups of initial heuristics can be distinguished:
route-construction heuristics, two-phase heuristics and heuristics based on exact
algorithms.

Route-building heuristics construct routes by iteratively adding stops to the
routes, which can be built sequentially or simultaneously. Criteria used for as-
signing stops to routes can be based on the nearest neighbor principle (Tyagi
(1968), Baker and Schaffer (1986), Solomon (1987), Balakrishnan (1993)), on the
savings principle (Clarke and Wright (1964),Gaskell (1967), Yellow (1970), Paes-
sens (1988), Webb (1972), Golden (1977), Nelson et al. (1988), Bodin (1983),
Van Landeghem (1988), Knowles (1967), Tillman and Cochran (1968), Holmes
and Parker (1976), McDonald (1972), Buxey (1979)), on the generalized savings
principle (Altinkemer and Gavish (1991), Desrochers and Verhoog (1989)) or on
the insertion and selection principle (Mole and Jameson (1976),Baker and Schaffer
(1986), Solomon (1987), Savelsbergh (1990b)).
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Two-phase methods belong to the second category of initial heuristics for the
VRP. These heuristics generate a solution to the VRP in two distinct stages.
The generalized assignment heuristic (Fisher and Jaikumar (1981), Nygard et al.
(1988), Baker (1992), Koskodis et al. (1992)), the route first-cluster second heu-
ristic (Beasley (1983)), the sweep heuristic (Gillet and Miller (1974)) and the
two-phase heuristic (Christofides et al. (1979), Potvin and Rousseau (1993)) can
be considered as two-phase methods.

The last category of initial heuristics are the heuristics based on exact algo-
rithms, like the incomplete tree-search heuristic (Christofides et al. (1979)).

An initial feasible solution to the VRP can be enhanced through the application
of an improvement heuristic. These procedures try to improve a feasible solution
by relocating and/or exchanging stops within or between routes.

Within route improvement heuristics are typical for the TSP and are based on
the k-opt and Or-opt procedures (Croes (1958), Lin (1965), Lin and Kernighan
(1973), Or (1976)). These heuristics are used to optimize the route-sequence of
each route of the VRP solution separately. The reader is referred to Solomon
et al. (1988) and Savelsbergh (1990a) for applications of within route improvement
heuristics to the VRP with side-constraints.

Between routes improvement methods are especially designed for the VRP.
These procedures try to improve an initial feasible solution by moving stops bet-
ween routes.

In the case of improvement heuristics, and particularly in that of between-
routes improvement, a distinction can be made between local and global optimi-
zation methods.

The local optimization heuristic, the traditional ”descent” method, finds a local
minimum by performing only moves of stops which result in the improvement of
the objective function value. As a result, local optimization heuristics are trapped
in the local optimum in which they descend.

Global optimization heuristics, on the contrary, succeed in leaving the local
optimum by temporarily accepting moves which cause a worsening of the objec-
tive function value. These heuristics are often called ”metaheuristics” because the
procedure used to generate a new solution out of the current one is embedded
in a heuristic which determines the search strategy. Popular metaheuristics are
Genetic Algorithms, Simulated Annealing and Tabu Search. For applications of
Simulated Annealing to the VRP, the reader is referred to Robusté et al. (1990),
Alfa et al. (1991), Teodorovic and Pavkovic (1992), Osman (1993), Thangiah
et al. (1994a), Van Breedam (1995), Janssens and Van Breedam (1995) and Van
Breedam (1994). With respect to the application of Tabu Search to the VRP,
the following publications are to be noticed: Pureza and França (1991), Taillard
(1992), Gendreau et al. (1992), Stewart et al. (1992), Osman (1993), Semet and
Taillard (1993), Thangiah et al. (1994c) and Van Breedam (1994) and Rochat and
Semet (1994).

In recent years, several successful applications in industry of computerized
vehicle routing systems have been reported. The reader is referred to Fisher et al.
(1982), Bell et al. (1983), Evans and Norback (1985), Golden and Wasil (1987),
Semet and Taillard (1993) and Rochat and Semet (1994) for some examples.

The success of most of the above-mentioned examples stems from the aptitude
of the computerized vehicle planning system to cope with some specific real-world
side-constraints. Some of the side-constraints, of which we feel that they are
important to industry, will be considered in the next sections.
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3 Customer-related side-constraints

These types of constraints deal with the nature of the demand-point, i.e. the
customer. Different types of side-constraints are considered.

The first type includes the combination of linehauls and backhauls. Instead of
having only drop-off or pick-up points, many real-life problems have both pick-up
and delivery stops.

Other specific situations occur when the quantity to be delivered can be split
over more than one route.

Some publications have been dedicated to the period routing problem. There is
some industrial interest for this topic because a delivery schedule for several days
or weeks can be developed. This is particularly useful for medium-term planning.

Most research attention has been directed at time-windows at the customer
site because it remains a hot topic for practical applications.

3.1 Mixed pick-up and delivery

The Vehicle Routing Problem with Backhauls (VRPB) occurs frequently in some
branches of industry. Examples are the distribution of beverages where some stops
require a delivery and others a pick-up, the distribution of grocery industries where
goods are picked-up at the suppliers’ and delivered at the supermarkets.

We will assume that there is a depot and that the destination of all picked-up
goods is always the depot. Dial-a-ride problems with precedence relationships,
whereby each customer has a pick-up and delivery location lies beyond the scope
of this paper.

Two different approaches can be considered. The first states that no deliveries
are allowed after pick-ups. The second approach does not impose this sequence,
that is to say, pick-ups and deliveries can be mixed as long as the route remains
feasible.

As far as the first approach is concerned, a number of solution procedures are
proposed.

The first to attempt to solve the VRPB were Deif and Bodin (1984), who adap-
ted the Clarke and Wright savings heuristic by including a term that penalizes,
and hence delays, the linkage of a backhaul to a delivery.

Goetschalckx and Jacobs-Blecha (1986) propose a two-phased solution metho-
dology, composed of the generation of an initial feasible solution, which is improved
in the second phase. The initial heuristic is based on the principle of spacefilling
curves. Pick-up and delivery points are first projected on a line, then clustered,
and subsequently routed by visiting each point in each cluster according to their
position along the line. The feasible solution obtained with this heuristic is im-
proved by means of within-route 2-opt and 3-opt improvement heuristics.

An optimal solution for small size VRPB can be obtained with the algorithm
of Yano et al. (1987). This procedure is a two-step process: in the first step, a
feasible solution is generated by means of an initial route-building heuristic; in the
second, a set-covering is solved with branch-and-bound. Experiments were perfor-
med on problems with up to 40 pick-up and delivery points. The number of stops
per route rarely exceeded four. Hence, computing time required to find an optimal
solution remains acceptable. However, this algorithm is practically unusable for
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larger real-world problems with even more complex side-constraints.

Instead of providing specific features for including backhauls, it is also possible
(and easier) to verify the backhaul constraint at the feasibility check of a route.
This idea is supported by Thangiah et al. (1994b), who recommend a backhaul
check at each insertion. Their solution methodology is a sequential insertion heu-
ristic followed by a number of local search improvement heuristics.

With respect to the second approach, where backhaul points can be sequen-
ced anywhere in a route, the following references are to be mentioned. Golden
and Stewart (1985) proposed a two-phased concept. In a first stage, all deliveries
are routed using an initial heuristic. Subsequently, an insertion procedure is used
to insert the pick-up points into the existing routes. The insertion criterion is
provided with a penalty term in order to delay pick-ups towards the end of the
route. Obviously, this solution methodology is only appropriate when the number
of delivery points greatly exceeds the number of pick-up points.

Casco et al. (1988) improved the above-mentioned heuristic of Golden and Ste-
wart (1985) in a number of ways. First, instead of discarding the pick-up points
from the initial solution, these points are directly linked with a two-way route to
the depot. All deliveries are planned with a route-building heuristic, in which the
vehicles are not filled to their full capacity. The spare capacity is useful for later
insertion of backhauls. The criterion for inserting backhaul points into delivery
routes during the second phase of the procedure is not only provided with a pe-
nalty to force the insertion of the backhaul towards the end of the route, but also
with one which takes account of the delivery load after the pick-up. The rationale
is that insertions of backhauls are appropriate if the load of the remaining delive-
ries in the route is small. From a practical point of view, this relieves the driver
of excessively shuffling the remaining load on his truck before loading the pick-up
load. This residual load-shuffling capacity can be added as an input parameter to
the planning heuristic.

Van Breedam (1994) analyzed the effect of mixed pick-up and delivery on the
behavior of eleven initial heuristics (8 route-construction and 3 two-phase heu-
ristics). Backhaul constraints were taken into account at the feasibility check of
a route. Backhauls were allowed to be inserted anywhere in the route. His most
important conclusion was that the route-sequence imposed by combining pick-ups
and deliveries tends to fade the differences between the solution of the initial heu-
ristics and the solution when only capacity constraints are considered.

Ultimately, customers may require simultaneous delivery and pick-up services.
Min (1989) was confronted with a problem of this type for the distribution of
library material for a public library center and its 22 branches. The author deve-
loped a three-phase cluster first-route second heuristic to solve this problem. In a
first phase, stops are clustered according to their geographical proximity using the
average linkage method, which is a hierarchical clustering method. Subsequently,
trucks with drivers are assigned to the clusters. The third phase consists of de-
termining the route-sequence of a truck within its cluster by solving a TSP with
mixed loadings using an adapted branch-and-bound process.

In the margin, we can mention the work of Hall (1991) which is directed at
creating and assessing spatial models for the VRPB with multiple terminals and
uniformly distributed stops. The proposed principals of optimal district shape and
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the optimal traversal of a district can be helpful for the selection of seed points
used by some types of heuristics for initializing routes.

3.2 Split delivery

Sometimes the demand of a stop may be fulfilled by more than one vehicle. This
can occur for instance when the demand required by a customer is larger than the
capacity of a vehicle, when a customer can be serviced by more than one depot,
or when it is less costly to service a customer more than once.

A solution methodology for this problem was proposed by Dror and Trudeau
(1990). In their methodology, an initial solution is generated by means of a variant
of the savings heuristic. Subsequently, improvement heuristics based on one-node
and two-node swaps between routes are performed. After each route-construction,
a 2-opt within route improvement is executed. This procedure yields a good VRP
solution. Thereafter, two specific split-delivery routines are launched. The k-
split interchange tries to split the demand of a stop between k-vehicles. The
second routine is a route-addition heuristic which considers the elimination of split
deliveries by adding a route. The four above-mentioned improvement routines all
work with a best improvement strategy, i.e. all feasible moves are evaluated and
only the best is selected.

Some important observations result from split delivery problems. Stops with a
split demand are usually the ones with above-average load. Splits resulting in high
distance savings usually take place at great distances from the depot. Important
savings in distance and vehicles as compared to traditional vehicle routing solutions
can be realized for problems with stops of which the demand exceeds 10% of the
vehicle’s capacity.

This approach can easily be adapted to problems where the demand of some
stops exceeds the vehicle’s capacity.

We found no other publications on the general aspects of split delivery. In this
field, an important research topic could be the combination of split delivery and
multiple depot, whereby each depot supplies different products to the customer
who requires a mix of products.

3.3 Period routing

Quite a lot of real-world planning situation requires a weekly schedule in addition
to the daily planning, for instance for fuel oil and industrial gas distribution. The
Period Vehicle Routing Problem (PVRP) is the problem of finding routes for all
days of a given T-day period. The number of customer visits per week is lower
than or equal to the number of days (T) of the period. These types of problems
are also called allocation/routing problems. The allocation part consists of the
assignment of customers to days of the period, while the routing part governs for
the daily planning.

Ball (1988) gives an overview of some application environments and some solu-
tion methodologies for the PVRP. Most solution methodologies are based on the
cluster-first route-second principle.

Dror and Levy (1986) proposed the assignment of customers to days of the
period and subsequently to solve a VRP for each day. The generalized assignment
problem for assigning customers to days is solved heuristically with a linear pro-
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gramming based approach. The VRP for each day is solved in two stages. In the
first stage, a feasible solution is obtained with an initial heuristic. This solution is
further improved by moving stops between routes and between days. The authors
felt that this improvement routine was sufficient to compensate for the absence of
a component which takes account of the geographic dispersion of the stops.

Geographic considerations are taken into account by the approaches of Christo-
fides and Beasley (1984) and Russell and Igo (1979). The latter associate customers
with a single allowable delivery combination with their appropriate days. In the
case of Christofides and Beasley (1984), a set of possible centers is given, and the
optimization process makes a choice. In both approaches, each day of the week
becomes associated with a customer representing the cluster center. The remai-
ning customers are assigned to the days of the week in order of decreasing service
frequency. The assignment cost of customers to days is given by the distance of
the customer to the center. This approach tends to associate geographic areas
with days of the period. Like with seed points, different associations of centers to
days of the period can be tried. An interchange heuristic is used to evaluate bet-
ter assignments. Once a solution for this p-median problem has been generated, a
VRP must be solved for each day. Again, a two-stage solution process is proposed,
consisting of an initial solution and an improvement heuristic.

A comparable approach was proposed by Dror and Ball (1987) and Trudeau
and Dror (1992) but has been adapted to handle stochastic demands in the case
of inventory routing. Inventory routing implies that each customer maintains a
local inventory. By means of a real life case of the distribution of heating oil, some
problems like the number of stockouts and route failures are addressed.

Tan and Beasley (1984) adapted the generalized assignment heuristic of Fisher
and Jaikumar (1981) for the VRP to the PVRP. In a first step, a number KT (K
vehicles, T -days period) of seed points is generated using the seed point genera-
tion method of Fisher and Jaikumar (1981). The second step consists of assigning
K seeds to each day of the period by solving a linear assignment problem. The
assignment cost of a stop to a seed corresponds to the minimum extra distance
travelled when inserting a stop in the route from the depot to the seed. In a third
step, the seed point generation method is executed with the stops of each day in
order to assign stops to vehicles. This results in a new set of KT seed points and
the entire procedure can be repeated from step two. Once the linear assignment
problem is solved in step two, an initial heuristic combined with an improvement
heuristic are used to solve the VRP for each day.

The approach of Gaudioso and Paletta (1992) is somewhat different, in so far
that stops are assigned to delivery combinations one at a time. Stops are arranged
in decreasing order of their delivery frequency. Within a same delivery sequence,
stops are ranked in decreasing order of their demand. The first stop of this list
is selected for allocation to a delivery combination. The feasible delivery combi-
nations for each customer are ordered lexicographically with respect to possible
days of service. If there exists a delivery combination for which the assignment
of the customer does not increase the vehicle fleet size, then that combination
is selected. Otherwise, any other delivery combination is chosen. This approach
is especially designed for a VRP whose objective is to minimize the number of
vehicles. Moreover, vehicles are allowed to complete more than one route a day.
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3.4 Time-windows

The Vehicle Routing Problem with time-windows (VRPTW) has received a lot of
attention in the literature. This is probably due to the wide applicability of these
types of side constraints in real-world cases.

Basically, two types of time-windows can be distinguished: hard and soft time-
windows. Hard time-windows restrict the delivery time at the customer’s site.
Violation of this window implies that the customer cannot be serviced. In the
case of soft time-windows, violation induces a penalty but the customer can be
serviced anyway. Hard time-windows most often correspond with the opening and
closing times of a customer, for instance 9.00 am to 5.00 pm. Examples of soft
time-windows are the lunch break between 12.30 pm and 2.00 pm or the time-
interval preferred by the customer for being serviced.

Much work in vehicle routing has centred on time-windows. Almost all types
of heuristics have been provided to handle hard time-windows easily. The addition
of a simple time-window feasibility check to the other route feasibility checks are a
minimal requirement. The criteria of some heuristics which consider time-windows
explicitly are more elaborated. For a sequential nearest neighbor heuristic, Ba-
ker and Schaffer (1986), Solomon (1987), Balakrishnan (1993) and Van Breedam
(1994) developed a time-window oriented nearest neighbor criterion. Van Landeg-
hem (1988) extended the savings criteria of the parallel savings heuristic with a
time-oriented part in order to take account of time-windows. The most interesting
time-windows extensions can be made by means of the insertion and selection
criteria of a sequential insertion heuristic. This is demonstrated by the work of
Baker and Schaffer (1986), Solomon (1987) and Van Breedam (1994). Potvin and
Rousseau (1993) and Van Breedam (1994) used some of these criteria in a parallel
version of the insertion heuristic.

A problem associated with the generalized assignment heuristic of Fisher and
Jaikumar (1981) is that the clustering and routing phases are separated. Con-
sequently, time aspects are only considered during the routing phase, which can
result in unfeasible routes in the case of difficult time-windows. Koskodis et al.
(1992) proposed treating the time-windows as being soft in a first stage. Through
subsequent iterations of the generalized assignment heuristic using an updated
cost matrix, the time-windows violation penalties are minimized. If no penalty
remains, then the soft time-windows solution is a feasible hard time-windows so-
lution.

Some work has also been done on the speeding up of the feasibility checks for
time-windows. This is particularly valuable for within and between routes impro-
vement procedures. Savelsbergh (1988), Solomon et al. (1988) and Baker and
Schaffer (1986) presented some work in this field.

Comparative studies on the effect of hard time-windows on the behavior of
heuristics are those by Solomon (1987) and Van Breedam (1994). Both authors
experienced the quality of the time-window oriented sequential insertion heuristic
as compared to a number of other heuristics. An important conclusion of Van
Breedam (1994) was that non-sequential heuristics using seed points for initiali-
zing routes give bad solutions in the case of binding time-windows.
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Very little research has been done on the problem of soft time-windows for the
VRP (VRPSTW). Min (1991) proposes a mixed-integer goal programming model
with a problem-size reduction procedure to solve a real-world case of moderate
size.

Balakrishnan (1993) presents a nearest neighbor, a savings and a space-time
heuristic for the VRPSTW. The main objective was to show that by allowing
violation of certain customer time-windows, considerable savings in total costs
could be made, considering that soft time-windows are maybe more realistic than
hard time-windows for real-world applications.

4 Vehicle-related side-constraints

Less attention has been directed at vehicle-related side-constraints than to customer-
related side-constraints. Nevertheless, a heterogeneous fleet of vehicles, most often
in accordance with site-dependencies, are minimal requirements for practical ap-
plications.

Another side-constraint is the maximal route-time for the truck-driver, most
often according to specific industry regulations.

The complexity of the VRP is increased when multicompartment vehicles are
considered. Such vehicles are used in some important branches of industry.

Finally, the attention is focused on time-dependent travel time. The impor-
tance of this topic grows with the increasing traffic saturation of highways and
metropolitan areas.

4.1 Heterogeneous fleet and site-dependencies

Most real-world cases are confronted with heterogeneous vehicles with respect to
their capacity. When a company has to decide whether to lease or buy vehicles,
it is faced with the fleet size and mix vehicle routing problem (FSMVRP): a VRP
in which the composition and the size of the fleet has to be determined so as to
minimize the sum of fixed costs and routing costs.

This problem was extensively treated by Golden et al. (1984) and Gheysens
et al. (1984). They proposed some adaptations of the savings heuristic in order
to take advantage of the different vehicle types. The savings formula is extended
to consider, in addition to savings in routing costs, savings in fixed costs of a
vehicle and opportunity savings. Opportunity savings can be defined in various
ways: proportional to the unused capacity of the vehicle servicing the resulting
combined tour of the savings heuristic; the cost of the smallest vehicle that can
service the entire unused capacity of the vehicle assigned to the combined tour.
Other versions of the savings heuristic use opportunity savings to encourage the
use of a larger vehicle when it is profitable to do so, i.e. when a combined tour
requires a larger vehicle than that of the two tours to be combined.

The authors also presented a route first-cluster second heuristic, whereby first
a giant tour with all customers is built with a TSP-heuristic. This tour is then
partitioned by finding the shortest path through a set of nodes with an aggregated
demand exceeding the largest vehicle capacity. The solution obtained with this
heuristic is further improved with a within-route TSP-heuristic.

Finally, the authors propose an adaptation of the generalized assignment heu-
ristic of Fisher and Jaikumar (1981). First, a good vehicle mix is obtained using
a lower bound procedure. Subsequently, as many seeds as there are vehicles are
generated. The first seed corresponds to the customers farthest from the depot,
while each next seed is the farthest from the set of previously selected seeds and
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the depot. The largest vehicle is assigned to the farthest seed, as larger routes
are expected to satisfy a larger demand. Stops are assigned to seeds by solving
a generalized assignment problem. A TSP is solved within each group of stops
assigned to a seed.

Results showed that the performance of the adapted savings heuristic was
rather poor as compared to the route first-cluster second and the adapted ge-
neralized assignment heuristic.

The problem of site-dependencies is even more complex because certain custo-
mers cannot be serviced by certain types of vehicles. This problem was addressed
by Nag et al. (1988). Basically, these authors considered three approaches to the
problem, based on the generalized assignment heuristic of Fisher and Jaikumar
(1981).

The input of the first approach is the assignment of stops to vehicles obtained
with a sweep-like heuristic. The sweep heuristic performs a sweep procedure for
each vehicle type sequentially, starting with the smallest type. An artificial load
is associated with each vehicle during the sweep procedure in order to get a more
balanced allocation. Routes are then formed within each group obtained by the
sweep procedure. If some routes are not feasible, the customers which can be ser-
viced by vehicles of a larger type are removed. Their inclusion is postponed until
the sweep procedure for larger vehicle types is implemented. The allocation ob-
tained with this process is then used for the first generalized assignment heuristic.
For each vehicle type, seeds are selected and a generalized assignment problem is
solved. A TSP-heuristic is used to sequence each route.

The second approach uses only the solution obtained by the sweep-like proce-
dure to determine seed points for each type separately. Subsequently, one gene-
ralized assignment problem is solved for the entire fleet of vehicles. To determine
the route-sequence within each group, a TSP-heuristic is used.

The third approach involves a seed selection for each type of vehicle, starting
with the largest type. Subsequently, customers which coincide with seeds are
eliminated and the seed selection is performed for the next largest vehicle type.
Next, one generalized assignment problem is solved and a TSP-heuristic is executed
to determine the route-sequence.

Experiments showed that approaches two and three outperformed approach
one.

4.2 Multicompartment vehicles

Multicompartment vehicles are typical of some branches of industry, for instance
the simultaneous delivery of different crude oil derivatives.

Basically, it may be sufficient to extend the check for the capacity constraint
to multiple capacity constraints per vehicle. However, in order to take advantage
of possible delivery combinations, specific criteria for stop selection must be pro-
vided. Route-construction heuristics will be much more easily adaptable to the
multicompartment principle than two-phase heuristics.

We are not aware of publications reporting a general approach in order to cope
with multicompartment vehicles.

4.3 Maximal route-time

Maximal route-time is frequently imposed on truck-drivers in accordance with re-
gulations.
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These types of side-constraints can be easily added to the feasibility check em-
bedded in heuristics of the route-construction type.

As far as heuristics with a separate clustering and routing phase (e.g. the
generalized assignment heuristic of Fisher and Jaikumar (1981)) are concerned,
the problem is much more complicated. During the clustering phase, one cannot
consider temporal aspects because no route-sequence can be determined at that
time. Hence, the resulting route in a cluster can be infeasible with respect to the
route-time.

Two ways can be considered to cope with this problem. The first is to discard
a stop of the infeasible route as long as the route remains infeasible. This stop is
reinserted in another existing route or, if not possible, in a new route. Different
criteria may be used for choosing the stop to be discarded: the stop with the
smallest demand, the stop closest to the depot, etc...

The other approach consists of making the procedure iterative. This means
that if a solution of the general assignment heuristic is unfeasible, the heuristic is
restarted with alternative seed locations. An attempt is made to move the seeds
in response to the magnitude of the violation of the maximal route-time. This
process is repeated until a feasible solution is found or a number of meaningful
seed locations have been tried out. A comparable procedure was proposed by
Nygard et al. (1988) for the deadline VRP, which is a VRP with stops having a
one-sided time-window, i.e. a latest allowable arrival time.

4.4 Time-dependent travel speed

The interest for time-dependent travel speed for vehicles has grown proportionally
with the increasing traffic congestion problems. In addition, the importance of
time-dependent travel speed is largely dependent on the scale of the VRP. The
smaller the scale on which to perform the routing, the more important it is to ob-
tain an accurate planning. Discarding time-dependent travel speed in metropolitan
areas can result in an underestimation of the total routing time. For nationwide
routing, the bias is more limited.

The time-dependent VRP (TDVRP) is a VRP for which the travel time bet-
ween two nodes depends on the distance between the points and the time of the
day. It is to be noticed that the triangle inequality does not hold anymore for the
TDVRP.

The most obvious approach consists of making the cost of each link between
two stops dependent on the time of the day. This approach was proposed by
Malandraki and Daskin (1992). Heuristics which can easily be adapted for this
concept are the ones where stops can only be added at the end of the route in
construction. The authors present an sequential and a parallel nearest neighbor
heuristic which satisfy this principle.

The adaptation of heuristics where stops are not only added at the end of
a route, for instance insertion and improvement heuristics, results in a substan-
tial increase in computation time of the heuristic. To test route feasibility, the
entire route next to the inserted stop have to be recomputed, including the time-
dependent costs which may have changed due to the changing time period. Ahn
and Shin (1991) partially bypassed this problem and conceived some efficient fea-
sibility checks for insertion and within-route improvement heuristics, based on the
monotonicity property of the arrival time function.
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The main disadvantage of a time-dependent inter-node cost is its enormous
number of parameters to be estimated and the prohibitive data storage require-
ments, especially when the number of time-periods is high. For these reasons, Hill
and Benton (1992) proposed a more practical framework to handle time-dependent
travel speeds. Instead of using a time-varying inter-node cost, a time-dependent
travel speed is assigned to every location. The speed between two locations is then
the average of the speeds assigned to each location. The speed at the destination
location is that of the time-period corresponding with the estimated arrival time
of the vehicle. It is even possible to provide different speeds when arriving at and
departing from the location. By using this approach, the amount of data to be
stored is limited. Moreover, most initial heuristics can easily be adapted to this
approach by using a forward-scheduling process.

5 Depot-related constraints

A major topic with respect to depot-related constraints is the case of multiple
depots.

5.1 Multiple depots

A lot of companies have more than one depot from which vehicles are scheduled.
The difficulty in handling a multi-depot problem depends on the degree of inte-
raction between the depots. If there is no interaction, the problem is easily solved:
assign stops to each depot and solve a VRP for each depot.

This strategy was used by Gillett and Johnson (1976). First, customers are
assigned to the depots and subsequently a VRP is solved for each depot using the
sweep heuristic.

Tillman and Cain (1972) extended the savings approach to the multiple depot
problem. For this purpose, the savings formula was slightly adapted. Golden et al.
(1977) further elaborated and refined this savings heuristic in order to handle large
problems.

Much more difficult to solve are multi-depot problems with interactions bet-
ween the depots. Examples are cases where trucks leave one depot to make de-
liveries at different stops and pass by an other depot for replenishment before
continuing their deliveries. Other applications require that stops must be delive-
red from different depots, depending on the type of commodity that is required.

It is clear that a lot of different interaction types can be distinguished in prac-
tice. In these situations, a case-sensitive tackling of the problem is required. The
large variety of interaction types is probably responsible for the shortage of general
publications on this subject.

6 Conclusions

In this article we have tried to give an overview of a set of side-constraints which
we feel are important to industrial applications. Moreover, their complexity and
the way they can be handled by solution methodologies largely determine the ap-
plicability of computerized vehicle routing systems for real-world applications.
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On the one hand, a lot of research has already focused on some types of side-
constraints, e.g. time-windows. On the other hand, side-constraints like multiple
depots, multicompartment vehicles and site-dependencies have attracted very little
attention.

The analyst system builder has a powerful set of tools at his disposal to conceive
elaborated computerized vehicle routing systems. Nevertheless, a lot of time is lost
to provide specific procedure to handle side-constraints for which no or insufficient
theoretical framework exists in the literature. Hence, further research is necessary,
especially for this category of side-constraints.
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